Memahami Dasar-Dasar
Mesin
A. STATIKA DAN TEGANGAN
1. Statika adalah ilmu yang
mempelajari tentang kesetimbangan benda termasuk gaya yang bekerja pada sebuah benda
agar benda tersebut dalam keadaan setimbang.
Bagian-bagian statika:
a.
Gaya
Gaya adalah sesuatu yang menyebabkan benda diam
menjadi bergerak atau sebaliknya. Gaya digambarkan sebagai sebuah vektor, yaitu
besaran yang mempunyai besar dan arah, simbolnya (F),
- Perpindahan benda dari A ke B akibat
gaya F
Gaya yang bekerja pada benda di atas
antara lain gaya berat (W) selalu berpusat pada titik beratnya dan arahnya
selalu ke pusat gravitasi bumi.
Gaya dapat sejajar dengan permukaan benda
atau membentik sudut () dengan permukaan tumpuan. Gaya dapat menyebabkan masa dari
diam menjadi bergerak hingga memiliki percepatan, persamaannya dapat dituliskan
sebagai berikut :
F = M (Kg) . a (m/s2)
=Kg. m/s2 = Newton (N)
Massa Percepatan
Bila gaya dihilangkan benda akan mengalami
perlambatan hingga waktu benda akan berhenti. Kecepatannya menjadi 0 (nol),
dikarenakan benda melewati permukaan yang kasar yang memiliki gaya gesek yang
arahnya selalu berlawanan dengan arah gerak benda. Hubungan gaya gesek
berbanding lurus dengan gaya normal atau dapat ditulis sebagai berikut :
F = µ. N Gaya normal
Koefisien gesek
Gaya tarik
1. Menentukan besarnya
gaya
Besarnya gaya dapat ditentukan oleh skala
tertentu misalnya : 1 cm mewakili 1 N atau kelipatanya. Satuan gaya ditentukan
oleh sistem SI yang dinyatakan Newton.
Garis lukisan gaya itu dapat diperpanjang
sesuai besaran gaya (F).
Titik tangkap gaya (A) dapat dipindahkan
sepanjang lintasanya, asalkan besar panjangnya tetap sama sesuai dengan gaya
(F).
A
Garis Kerja Gaya
2. Menyusun Dua Buah
Gaya
Arah gerakan dan besar gaya pada benda A
dipengaruhi oleh dua komponen gaya masing-masing gaya F1 dan F2
terhadap
benda/titik A dapat diwakili oleh gaya resultan gaya (F) yang besarnya dapat
ditentukan sebagai berikut :
F1
a F = F1 2 + F2 2 + 2 F1. F2 . Cos
A F2
Bila sudut a dibagi dalam a1 dan a2 maka dapat
dituliskan persamaan = =
3. Menyusun Lebih Dari
Dua Gaya
Benda A dikenai tiga buah gaya ; F1, F2 dan F3
maka Resultan gayanya dapat dijabarkan sebagai berikut :
Penyelesaiannya diatas diseut dengan penyelesaian secara polygon (Segi
banyak) dan secara analitis yaitu setiap gaya diuraikan ke dalam sumbu x dan y.
4. Menyusun gaya dengan metode poligon
Metode ini dengan cara memindahkan gaya P2
ke ujung P1, P3 ke ujung P2, P4
ke ujung P3 dan seterusnya secara berantai. Pemindahan gaya tersebut
besar dan arahnya harus sama, pemindahan dilakukan beruntun dan dapat berputar
ke kanan dan ke kiri. Resultan gaya diperoleh dengan menarik garis titik A
sampai ke ujung gaya yang terakhir dan arahnya adalah dari A menuju titik ujung
gaya terakhir.
5.
Menyusun gaya yang analitis
Untuk mencari resultan gaya juga dapat
dilakukan dengan cara analitis, baik untuk menentukan besarnya, kedudukan titik
tangkapnya, maupun arahnya melalui sumbu X dan Y, yaitu sebagai berikut :
6. Menguraikan Gaya
Menguraikan gaya dapat dilakukan dengan
menguraikan pada arah vertikal dan horizontal yang saling tegak lurus, atau
masing-masing komponen sabagai sisi-sisi dari jajaran genjang dengan sudut
lancip tertentu yang mudah dihitung pada gambar di bawah ini diberikan sudut
lancip α.
Jika dua buah gaya dapat digantikan
dengan sebuah gaya dapat diuraikan menjadi dua buah gaya yang
masing-masingdisebut dengan komponen gaya menurut garis kerja yang sudah
ditentukan.
Fx = F Cos α (F1 mengapit
sudut F)
Fy = F Sin α ( F2 depan sudut
F)